14,532 research outputs found

    Supporting Read/Write Applications in Embedded Real-time Systems via Suspension-aware Analysis

    Full text link
    In many embedded real-time systems, applications often interact with I/O devices via read/write operations, which may incur considerable suspension delays. Unfortunately, prior analysis methods for validating timing correctness in embedded systems become quite pessimistic when suspension delays are present. In this paper, we consider the problem of supporting two common types of I/O applications in a multiprocessor system, that is, write-only applications and read-write applications. For the write-only application model, we present a much improved analysis technique that results in only O(m) suspension-related utilization loss, where m is the number of processors. For the second application model, we present a flexible I/O placement strategy and a corresponding new scheduling algorithm, which can completely circumvent the negative impact due to read- and write-induced suspension delays. We illustrate the feasibility of the proposed I/O-placement-based schedule via a case study implementation. Furthermore, experiments presented herein show that the improvement with respect to system utilization over prior methods is often significant

    Efficient Integer Coefficient Search for Compute-and-Forward

    Full text link
    Integer coefficient selection is an important decoding step in the implementation of compute-and-forward (C-F) relaying scheme. Choosing the optimal integer coefficients in C-F has been shown to be a shortest vector problem (SVP) which is known to be NP hard in its general form. Exhaustive search of the integer coefficients is only feasible in complexity for small number of users while approximation algorithms such as Lenstra-Lenstra-Lovasz (LLL) lattice reduction algorithm only find a vector within an exponential factor of the shortest vector. An optimal deterministic algorithm was proposed for C-F by Sahraei and Gastpar specifically for the real valued channel case. In this paper, we adapt their idea to the complex valued channel and propose an efficient search algorithm to find the optimal integer coefficient vectors over the ring of Gaussian integers and the ring of Eisenstein integers. A second algorithm is then proposed that generalises our search algorithm to the Integer-Forcing MIMO C-F receiver. Performance and efficiency of the proposed algorithms are evaluated through simulations and theoretical analysis.Comment: IEEE Transactions on Wireless Communications, to appear.12 pages, 8 figure
    • …
    corecore